

# Fluorthiatriazine

Eberhard Fischer<sup>a</sup>, Eveline Jaudas-Prezel<sup>b</sup>, Roberto Maggiulli<sup>c</sup>, Rüdiger Mews<sup>\*c</sup>, Heinz Oberhammer<sup>b</sup>, Rainer Paape<sup>d</sup> und Wolf-Dieter Stohrer<sup>\*d</sup>

Fachbereich Chemie der Universität Rostock<sup>a</sup>, Buchbinderstraße 9, O-2500 Rostock

Institut für Physikalische und Theoretische Chemie der Universität Tübingen<sup>b</sup>, Auf der Morgenstelle 8, W-7400 Tübingen

Institut für Anorganische und Physikalische Chemie der Universität Bremen°, Leobenerstraße, W-2800 Bremen 33

Institut für Organische Chemie der Universität Bremen<sup>d</sup>, Leobenerstraße, W-2800 Bremen 33

Eingegangen am 3. Dezember 1990

Key Words:  $1\lambda^4$ ,2,4,6-Thiatriazines, preparation, structures /  $1\lambda^4$ ,2,4,6-Thiatriazinium cations / Calculations, MNDO

#### Fluorothiatriazines

From the reaction of  $(ClCN)_2(ClSN)$  (1) with AgAsF<sub>6</sub> in liquid SO<sub>2</sub>  $(ClCN)_2(SN)^{\oplus}AsF_6^{\ominus}$  (2) is obtained in quantitative yield. With CsF 2 gives  $(ClCN)_2(FSN)$  (3), which slowly dismutates at room temperature to form (ClCN)(FCN)(FSN) (4) and 1. Fluorination of 1 with SbF<sub>3</sub> yields  $(FCN)_2(FSN)$  (5). With AsF<sub>5</sub> 5 forms the salt  $(FCN)_2(SN)^{\oplus}AsF_6^{\ominus}$  (6). The cation of 6 is trans-

Substituierte 1,3,5-Triazine (RCN)<sub>3</sub> und auch  $1\lambda^4$ ,2,4,6-Thiatriazine (RCN)<sub>2</sub>(R'SN) besitzen eine gewisse Bedeutung in der Wirkstoffchemie<sup>1,2</sup>; über die erst in letzter Zeit etwas eingehender untersuchten Dithiatriazine (RCN)(R'SN)2 ist relativ wenig bekannt<sup>3-6)</sup>. Die Zahl der bisher isolierten stabilen Trithiatriazine  $(RSN)_3 [R = Cl^{7}, F^{8}, ON(CF_3)_2^{9}]$  ist sehr klein. Ihrer interessanten Struktur- und Bindungsverhältnisse wegen haben sie eine gewisse Beachtung gefunden: als Ausgangsverbindung für die Synthesen acyclischer und cyclischer Schwefel-Stickstoff-Verbindungen<sup>10-12</sup>); zur Einführung von Thiazyl-Liganden in die Übergangsmetallchemie ist besonders das (NSCl)<sub>3</sub> eingesetzt worden<sup>13,14</sup>. Voraussetzung für die Eignung als Synthesereagens in der hier beschriebenen Art ist die relativ leichte Spaltbarkeit des Trithiatriazin-Gerüsts. Der graduelle Ersatz von Schwefel-Atomen durch Kohlenstoff-Atome in diesen Heterocyclen führt zu einer Erhöhung der Stabilität: während bereits bei Raumtemperatur geringe Mengen NSCl im Gleichgewicht mit (NSCl)<sub>3</sub> vorliegen<sup>15)</sup>, zerfällt (ClCN)<sub>3</sub> nennenswert erst weit über seinen Siedepunkt (194°C)<sup>16)</sup>. Ziel unserer Arbeiten ist es zu untersuchen, welchen Einfluß der Ersatz von Schwefel durch Kohlenstoff auf Struktur- und Bindungsverhältnisse, auf Stabilität und Reaktivität der Triazin-Systeme hat. Besonders attraktiv erschienen uns die einfachsten Vertreter dieser Verbindungsklassen, die Trihalogen-Derivate. In der Reihe der Trichlor-Derivate sind das 1.3,5-Trichlor-2,4,6-triazin<sup>17</sup>, das 1.3,5-Trichlor-1 $\lambda^4$ ,2,4,6thiatriazin<sup>18)</sup> und das 1,3,5-Trichlor- $1\lambda^4$ , $3\lambda^4$ , $5\lambda^4$ , 2,4,6-trithiatriazin<sup>7)</sup> seit längerer Zeit bekannt. Vor kurzem konnte das fehlende Glied in dieser Reihe, das 1,3,5-Trichlor- $1\lambda^4$ ,  $3\lambda^4$ , 2,4,6-dithiatriazin, durch Umsetzung von (NSCl)<sub>3</sub> mit ClCN bei Raumtemperatur erhalten werden<sup>19)</sup>. Von den entsprechenden Fluor-Derivaten sind bisher nur (NSF)<sub>3</sub><sup>8)</sup> und (NCF)<sub>3</sub><sup>20)</sup> sowie die gemischten Fluor-halogen-1,3,5triazine isoliert worden<sup>20)</sup>. Gleichfalls bekannt sind 2,4,6-Tribrom<sup>21)</sup> und 2,4,6-Triiod-1,3,5-triazin<sup>22)</sup>.

formed by NOCl or CsBr into the corresponding neutral derivatives  $(FCN)_2(ClSN)$  (7) and  $(FCN)_2(BrSN)$  (8), respectively. The gas-phase structure of 5 was determined by electron diffraction. The influence of the different exocyclic substituents on the bond properties in this ring system is explained by means of MNDO calculations.

In den vorliegenden Arbeiten berichten wir über die Synthesen von Fluor-, Chlorfluor- und Bromfluorthiatriazinen, über die Strukturbestimmung von  $(FCN)_2(FSN)$  sowie über die Ergebnisse von MNDO-Rechnungen an  $(FCN)_2(XSN)$ (X = F, Cl, Br) und  $(FCN)(SN)^{\oplus}$ .

#### **Ergebnisse und Diskussion**

### A. Synthesewege zu Fluorthiatriazinen

Durch nucleophilen Ersatz der ringgebundenen Chlor-Substituenten in (CICN)<sub>2</sub>(CISN) (1) mit Hilfe geeigneter Fluorierungs-Agentien sollten Fluor-Derivate dieses Ringsystems zugänglich sein. Für die Metathese kommen vor allem Alkalifluoride, Silberfluoride, SbF3 etc. in Frage. Die Substitution selbst ist nach einem S<sub>N</sub>1- oder S<sub>N</sub>2-Mechanismus denkbar. Der gezielte Austausch eines einzelnen Chlor-Substituenten wird bei einer durch Lewis-Säuren unterstützten  $S_N$ 1-Führung erwartet. Wie z.B. am (PhCN)<sub>2</sub>(SN)<sup> $\oplus$ </sup> PF<sup> $\oplus$ </sup> gezeigt<sup>23)</sup>, ist das für einen S<sub>N</sub>1-Ablauf als Primärprodukt geforderte Kation - zumindest bei Phenyl-Substituenten - stabil. Wir wählten für die Erzeugung des Dichlorthiatriazinium-hexafluoroarsenats die "Silber-Salz-Methode", die Halogenid-Abstraktion mit Hilfe von AgAsF<sub>6</sub>; in einem zweiten Schritt sollte F<sup>O</sup> an das kationische Schwefel-Zentrum addiert werden:

$$(\text{ClCN})_2(\text{ClSN}) + \text{AgAsF}_6 \xrightarrow{\text{SO}_2} (\text{ClCN})_2(\text{SN})^{\oplus} \text{AsF}_6^{\ominus} \qquad (1)$$

$$1 \qquad 2$$

$$\mathbf{2} + \mathrm{CsF} \xrightarrow{\mathrm{SO}_2}_{-\mathrm{CsAsF}_6} (\mathrm{ClCN})_2 (\mathrm{FSN}) \tag{2}$$

Chem. Ber. 124 (1991) 1347-1352 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/0606-1347 \$ 3.50+.25/0

$$2 \quad 3 \longrightarrow (ClCN)(FCN)(FSN) + 1$$
(2a)

$$1 + SbF_3 \xrightarrow{\text{Sulfolan}} (FCN)_2(FSN) + SbCl_3$$
(3)  
5

Die Addition von  $F^{\ominus}$  an das Kation von 2 führt primär zu dem gewünschten Monofluor-Derivat 3, das jedoch nicht stabil ist. Beim Stehenlassen tritt z. T. Dismutierung zur Difluor-Verbindung 4 und 1 ein; der Mechanismus dieser Reaktion ist ungeklärt. Stabil ist eine reine Fluor-Verbindung 5, die aus der Umsetzung von 1 mit SbF<sub>3</sub> in Sulfolan bei 80°C in etwa 50proz. Ausbeute erhalten wird. 5 ist eine farblose Flüssigkeit, Sdp. 77 – 78°C (extrapol.), die sich unter Ausschluß von Feuchtigkeit bei Raumtemperatur unzersetzt aufbewahren läßt.

Auch das Perfluor-Derivat agiert als Halogenid-Ionen-Donor gegenüber Lewis-Säuren. Mit AsF<sub>5</sub> wird in quantitativer Ausbeute das Hexafluoroarsenat 6 gebildet. Das <sup>19</sup>F-NMR-Spektrum liefert den eindeutigen Beweis dafür, daß die Schwefel-Fluor-Bindung gespalten wird.

$$5 + AsF_5 \xrightarrow{SO_2} [(FCN)_2(SN)]^{\oplus} AsF_6^{\ominus}$$
(4)

$$6 + \text{NOCl} \xrightarrow{\text{SO}_2} (\text{FCN})_2(\text{CISN}) + \text{NO}^{\oplus} \text{AsF}_6^{\ominus}$$
(5)  
7

$$6 + CsBr \xrightarrow{SO_2} (FCN)_2(BrSN) + Cs^{\oplus} AsF_{\delta}^{\ominus}$$
(6)

$$6 + KI \xrightarrow{SO_2} \{(FCN)_2(ISN)\} + K^{\oplus} AsF_{\delta}^{\ominus}$$
(7)  
9

$$9 \xrightarrow{1}{2} I_2 + \left\{ (FCN)_2 (SN)^{\bullet} \right\}$$

$$10$$
(8)

Mit NOCl bzw. CsBr läßt sich das Salz 6 in die stabilen Neutralverbindungen 7 und 8 mit Schwefel-gebundenem Chlor bzw. Brom überführen. 7 und 8 zeigen keine Neigung zum intra- oder intermolekularen Halogen-Austausch. S<sup>IV</sup>Br-Derivate sind im allgemeinen außerordentlich instabil, die Ausbildung einer relativ stabilen S – Br-Bindung in diesem Ringsystem ist bemerkenswert. (Bei Raumtemperatur zersetzt sich 8 langsam.) Aus der Literatur ist mit dem (PhCN)<sub>2</sub>(ISN) sogar ein SI-Derivat bekannt, dessen Struktur durch Röntgenbeugung bestimmt wurde<sup>24)</sup>. 9 ist jedoch nicht stabil und zerfällt unter Bildung von I<sub>2</sub>; das daneben erwartete 10 konnte jedoch nicht isoliert werden, es geht Folgereaktionen ein.

#### B. Spektroskopische Untersuchungen an Fluorthiatriazinen

Zweifelsfrei charakterisieren lassen sich die Fluorthiatriazine durch <sup>19</sup>F-NMR-, IR- und Massenspektren.

In den <sup>19</sup>F-NMR-Spektren (s. Tab. 1) zeigen die chemischen Verschiebungen sowohl der CF- als auch der SF-Gruppen eine eindeutige Abhängigkeit von den Kosubstituenten. Während in allen Fällen die CF-Signale als breite

Singuletts ohne Feinstruktur auftreten, sind die SF-Signale in 5 zum Triplett ( ${}^{3}J = 25.45$  Hz) und in 4 zum Dublett  $({}^{3}J = 25.83 \text{ Hz})$  aufgespalten. Die IR-Spektren der Verbindungen 5, 7 und 8 sind in Tab. 2 aufgeführt. Sie sind einander sehr ähnlich; zuordnen lassen sich die Banden bei  $\tilde{v} =$ 687 cm<sup>-1</sup> in 5 und 463 cm<sup>-1</sup> in 7 der S-F- bzw. S-Cl-Valenzschwingung. Die S-Br-Bande 8 liegt bei  $\tilde{v} = 370$  $cm^{-1}$ . 3 und 4 konnten nicht in reiner Form isoliert werden; die IR-Spektren der Gemische zeigen große Ähnlichkeit mit den in Tab. 2 aufgeführten, die charakteristische S-F-Bande wird bei  $\tilde{v} = 670 \text{ cm}^{-1}$  beobachtet. Bemerkenswerte Unterschiede zeigen die Massenspektren der SF-Thiatriazine im Vergleich zu den SCI- und SBr-Derivaten. Während bei den ersteren in allen Fällen das Molekül-Ion mit relativ hoher Intensität auftritt (verglichen mit [M<sup>+</sup> - F], wird bei den letzteren als Bruchstück höchster Masse lediglich  $[M^+ - X]$  beobachtet.

Tab. 1. <sup>19</sup>F-NMR-Daten der Fluorthiatriazine

|                                         | δ(SF) | δ(CF)  | J(F,F) [Hz] |
|-----------------------------------------|-------|--------|-------------|
| $N_3C_2F_2SF(5)$                        | 44.25 | -15.05 | 25.45       |
| $N_{3}C_{2}F_{2}SCl(7)$                 |       | -11.84 | _           |
| $N_{3}C_{2}F_{2}SBr(8)$                 | -     | -11.12 | _           |
| N <sub>3</sub> C <sub>2</sub> FCISF (4) | 46.4  | -16.5  | 25.83       |
| $N_3C_2Cl_2SF(3)$                       | 47.6  |        | _           |
|                                         |       |        |             |





| SX = S - F(5) | S-Cl (7)         | S-Br (8)  |          |
|---------------|------------------|-----------|----------|
| 1713 w        | 1682 w           |           | <u> </u> |
| 1644 m        | 1628 w           |           |          |
| 1590 vs       | 1588 vs          | 1580 vs   | i i      |
| 1555 m sh     | 1555 8           | 1532 w    | 1        |
| 1535 w        | 1000 0           | 1004      |          |
| 1460 vs       | 1447 vs          | 1443 vs   | ( King   |
| 1416 \$       | 1410 vs          | 1410 vs   |          |
| 1379 m        | 1360 vw          | 1410 45   |          |
| 1345 m        | 1335 w           | 1333 w    | 1        |
| 1086 s        | 1088 m           | 1086 m    | J<br>Vor |
| 1000 5        | 1059 w           | 1055 w    | •CF      |
| 949 w         | 1055 1           | 1055 ₩    |          |
| 856 m         | 855 w            | 851 m     |          |
| 797 m         | 781 m            | 777 m     |          |
| 787 m         |                  |           |          |
| 687 vs        |                  |           | Ver      |
| 664 s         | 642 m            | 637 m     | 131      |
| 604 vw        | • · <b>-</b> · · | 001 111   |          |
| 542 w         | 517 w            | 515 vw    |          |
|               | 463 s            | 010       | Vcci     |
| 463 w         |                  | 463 w     | -301     |
| 105           |                  | 432 m     | Ven      |
|               |                  | 403 w     | • SBr    |
|               |                  | 376 m     |          |
|               |                  | 2 · 0 · M |          |

## C. Strukturuntersuchung an 1,3,5-Trifluor- $1\lambda^4$ ,2,4,6-thiatriazin (5)

Die Gasphasenstruktur von 5 wurde mit Hilfe der Elektronenbeugung ermittelt. Aus der Radialverteilungsfunktion (Abb. 1) ergibt sich für 5 ein vorläufiges Molekülmodell, in dem das S-Atom aus der Ebene der C- und N-Atome herausragt und die S-F-Bindung in axiale Richtung zeigt. Im anschließenden least-squares-Verfahren wurden die molekularen Intensitäten (s. Exp. Teil, Abb. 2) mit einer diagonalen Gewichtsmatrix modifiziert und die Streuamplituden und -phasen von Haase<sup>25)</sup> verwendet. Dabei wurde  $C_s$ -Symmetrie mit planarer Anordnung der C- und N-Atome angenommen. Da die C-N- (C1-N1 und C1-N2) und C-F-Bindungslängen sehr ähnlich sind, führt der Versuch. diese getrennt zu bestimmen, wegen sehr hoher Korrelationen zwischen Abständen und Schwingungsamplituden zu Fehlergrenzen, die größer sind als die Unterschiede zwischen diesen Bindungslängen. Anderseits deutet der kleine Wert für die C-N-Schwingungsamplitude [0.030(6) Å] darauf hin, daß dieser Unterschied zwischen den beiden Bindungslängen gering sein muß. Der C-F-Abstand wurde daher auf dem für (FCN)<sub>3</sub> bestimmten Wert (1.311 Å) festgehalten und in verschiedenen Verfeinerungen um +0.005 Å verändert, um den systematischen Einfluß dieser Annahme auf den C-N-Abstand abzuschätzen. Obwohl MNDO-Rechnungen (siehe unten) unterschiedliche C-N-Bindungslängen (C1 – N1 kürzer C1 – N2) vorhersagen, wurden diese im abschließenden least-squares-Verfahren gleichgesetzt, da der Unterschied nicht mit der erforderlichen Genauigkeit bestimmt werden konnte. Aus Tab. 3 sind die Annahmen für die Schwingungsamplituden ersichtlich. Im Verlauf der Strukturbestimmung ergaben sich für die N-C-F-Winkel N1-C1-F2 und N2-C1-F2 innerhalb der Standardabweichungen übereinstimmende Werte. Sie wurden daher



Abb. 1. Experimentelle Radialverteilungsfunktion für 5 und Differenzkurve; die Lage der interatomaren Abstände ist durch Striche angezeigt

in der endgültigen Verfeinerung gleichgesetzt. Die Ergebnisse für 1,3,5-Trifluor- $1\lambda^4$ ,2,4,6-thiatriazin sind in Tab. 3 angegeben.



Abb. 2. Experimentelle (Punkte) und berechnete (Linie) molekulare Intensitätsfunktion für 5 und Differenzen

Tab. 3. Ergebnisse der Strukturanalyse für 1,3,5-Trifluorthiatriazin  $(5)^{ai}$ 

| Geometrische Parameter |           |                                     |           |  |
|------------------------|-----------|-------------------------------------|-----------|--|
| $(C-N)_{mittel}$       | 1.315(6)  | S-N-C°                              | 115.0(9)  |  |
| S-N                    | 1.592(7)  | $N-C-N^{cj}$                        | 131.2(12) |  |
| C-F <sup>b)</sup>      | 1.311[5]  | N-S-F                               | 99.9(31)  |  |
| S-F                    | 1.633(14) | $N1 - S - N3/N1 - C1 - N2 - C2^{d}$ | 16.4(9)   |  |
| C-N-C                  | 114.6(17) | $\delta(C1 - N1 - S - N3)^{c,e)}$   | 17.9(10)  |  |
| N-S-N                  | 109.8(17) | $\delta(N2-C1-N1-S)^{(c,e)}$        | 10.3(6)   |  |

Interatomare Abstände und Schwingungsamplituden

| CF<br>C-N<br>S-N<br>S-F<br>C1C2<br>N1F2 | 1.31<br>1.32<br>1.60<br>1.63<br>2.21<br>2.22 | } | 0.045 <sup> f)</sup><br>0.030(6)<br>0.047(7)<br>0.050 <sup> f)</sup><br>0.051(3) | N1…C2<br>S…N2<br>C1…F1<br>C1…F3<br>N2…F1<br>S…F2 | 2.74<br>2.90<br>3.11<br>3.38<br>3.48<br>3.65 | } | 0.111(32)<br>0.145(45)<br>0.065(16)<br>0.140 <sup>0</sup><br>0.068(6) |
|-----------------------------------------|----------------------------------------------|---|----------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|---|-----------------------------------------------------------------------|
| N1…N2<br>8…C1<br>N1…F1<br>N1…F3         | 2.40<br>2.46<br>2.47<br>2.61                 | } | 0.063(4)<br>0.060 <sup>f)</sup>                                                  | N1…F3<br>F1…F2<br>F2…F3                          | 4.04<br>4.12<br>4.39                         | } | 0.116(12)<br>0.060 <sup>f)</sup>                                      |

<sup>a)</sup>  $r_a$ -Werte in Å und Grad: Fehlergrenzen sind  $3\sigma$ -Werte und enthalten eventuelle systematische Fehler. Die Atombezeichnungen sind in Abb. 1 angegeben. – <sup>b)</sup> Nicht verfeinert, innerhalb der in eckiger Klammer angegebenen Grenzen verändert (siehe Text). – <sup>c)</sup> Abhängiger Parameter. <sup>d)</sup> Winkel zwischen der N1 – S – N3-Ebene und der Ebene N1 – C1 – N2 – C2. – <sup>e)</sup> Diederwinkel. – <sup>f)</sup> Nicht verfeinert.

#### D. Bindungsverhältnisse in $1\lambda^4$ ,2,4,6-Thiatriazinen

Für verschiedene S-gebundene Liganden X (X = H, F, Cl, Br) wurden MNDO-Totaloptimierungen durchgeführt. Die Ergebnisse reproduzieren durchweg die für X = F experimentell gefundene axialständige Anordnung. Die Energieunterschiede  $\Delta E$  zu den teiloptimierten Strukturen mit erzwungenem äquatorialständigen Liganden zeigen eine Abhängigkeit von der Elektronegativität (X = H,  $\Delta E$  = 39.2 kcal/mol; X = F,  $\Delta E$  = 59.3 kcal/mol; X = Cl,  $\Delta E$  = 40.0 kcal/mol; X = Br;  $\Delta E$  = 39.2 kcal/mol). Der besonders große Energieunterschied für X = F ist ein Hinweis darauf, daß nicht nur die Antiaromatizität des cyclischen 8-π-Elektronensystems bei der äquatorialen Anordnung des S-gebundenen Liganden X für die geringe Stabilität dieser Anordnung verantwortlich ist, sondern daß die axiale Anordnung zumindest im Falle des elektronegativsten Liganden X = F noch durch die hyperkonjugative Wechselwirkung der  $\pi$ -Elektronen der N-C-N-C-N-Ebene mit dem  $\sigma^*$ -Orbital der S-F-Bindung begünstigt wird. Im Vergleich der MNDO-berechneten Energieunterschiede  $\Delta E$  ist noch zu beachten, daß im Falle der erzwungenen äquatorialen Anordnung bei den S-gebundenen Halogen-Atomen die mesomere Wechselwirkung zwischen dem 8-π-Elektronensystem und dem freien Elektronenpaar am Halogen-Atom energetisch zu Buche schlägt (zu/abnehmende mesomere Stabilisierung/Destabilisierung mit abnehmender Elektronegativität). Die Tatsache, daß die im Vergleich zur S-H-Bindung für die Hyperkonjugation geeignetere S-Cl- und S-Br-Bindung die axiale Anordnung in der Rechnung nicht stärker stabilisieren, ist möglicherweise darauf zurückzuführen, daß diese stärkere hyperkonjugative Stabilisierung der axialen Anordnung kompensiert wird und durch eine mesomere stabilisierende Wechselwirkung zwischen dem ein-

Schema 1



samen Elektronenpaar am Cl- bzw. Br-Atom und den unbesetzten  $\pi$ -Orbitalen im 8- $\pi$ -Cyclus mit äquatorialen S-gebundenen Liganden, eine Stabilisierung, die für X = H fehlt und für das elektronegative F-Atom sehr viel geringer ausfällt.

Zusammen mit den experimentell gefundenen Werten sind in Schema 1 die MNDO-berechneten Bindungslängen, Bindungswinkel und Ladungsverteilungen für das totaloptimierte 1,3,5-Trifluorthiatrizin gezeigt.

Diese Ladungsdichten zeigen und die MNDO-berechneten Orbitale bestätigen, daß das Thiatriazin wie in Schema 2 gezeigt verstanden werden kann.

Schema 2



Diese Struktur fordert in Übereinstimmung mit den Rechnungen und im Gegensatz zu den experimentellen Ergebnissen zwingend, daß die gegenüberliegenden N-C-Bindungen (in deren Bereich zwei der drei besetzten  $\pi$ -Orbitale bindend sind) kürzer sind als die benachbarten C-N-Bindungen (in deren Bereich nur eines der drei besetzten  $\pi$ -Orbitale bindend ist). Dieses Bild erklärt auch, warum unterschiedliche S-gebundene axialständige Liganden X auf die C-N-Bindungen keinen Einfluß haben, wie die in Schema 3 aufgeführten MNDO-Bindungslängen zeigen.

Die hyperkonjugative Wechselwirkung des Orbitals  $\sigma^*$ der axialen Bindung S-X findet hauptsächlich mit dem höchsten besetzten  $\pi$ -Orbital (HOMO) des Triazapentadienyl-Anions statt, einem nichtbindenden Orbital mit hohen Koeffizientendichten an den N-Atomen und schr geringen Koeffizientendichten an den C-Atomen (Schema 4).

Selbst die erwartungsgemäß vergleichsweise starken Bindungsänderungen bei der Abspaltung von  $X^{\ominus}$  lassen sich auf der Basis der Wechselwirkung dieses HOMOs mit dem unbesetzten p-Orbital (anstelle der unbesetzten  $\sigma^*$ -Orbitale der Bindungen S-X) verstehen. Unklar allerdings ist, warum im Falle des S-gebundenen F-Atoms, dem stärksten hyperkonjugativ wirkenden  $\sigma^*$ , die S-N-Bindung länger ist als im Falle von X = Br und X = Cl, wenngleich diese Unterschiede nur sehr klein ausfallen.

Auf der Grundlage des Grenzorbitalmodells ist zu erwarten, daß  $\pi$ -Akzeptoren an den beiden C-Atomen (mit sehr kleiner Koeffizientendichte im HOMO) nur einen geringen Einfluß auf Energie und Struktur der Thiatriazine zeigen sollten im Gegensatz zu  $\pi$ -Donoren, die mit dem LUMO (mit hoher Koeffizientendichte an den beiden C-Atomen) stabilisierend wechselwirken sollten.  $\pi$ -Donoren sollten die beiden gegenüberliegenden C-N-Bindungen dehnen, auf die benachbarten C-N-Bindungen hingegen keinen merklichen Einfluß ausüben. Schema 3



Schema 4



# **Experimenteller** Teil

Die Ausgangsverbindungen (ClCN)<sub>2</sub>(ClSN)<sup>18</sup>), AgAsF<sub>6</sub><sup>20</sup>, AsF<sub>5</sub><sup>27</sup>) und NOCl<sup>28</sup>) wurden nach Literaturvorschriften dargestellt. Alle Operationen erfolgten unter sorgfälltigem Ausschluß von Feuchtigkeit. – IR: Nicolet 50 DX FT-IR, als Nujol bzw. Kel-F-Verreibungen zwischen KBr-Platten (Salze) bzw. als Gase in einer 10-cm-Küvette (Neutralverbindungen). – <sup>19</sup>F-NMR: Bruker AW 80, 10-30 proz. Lösungen in SO<sub>2</sub> (Salze) (CFCl<sub>3</sub> ext. Stand.) bzw. 10-30 proz. Lösungen in CFCl<sub>3</sub> (Neutralverbindungen). – Elementaranalysen: Mikroanalytisches Laboratorium Beller, Göttingen.

3,5-Dichlor-1 $\lambda^4$ .2,4,6-thiatriazinium-hexafluoroarsenat (2): In jeweils einen Schenkel einer druckfesten, zweischenkligen Steckfalle mit Teflon-Ventil werden 3.14 g (15.36 mmol) I sowie 4.56 g (15.36 mmol) AgAsF<sub>6</sub> gefüllt, ca. 20 ml SO<sub>2</sub> hinzukondensiert und von  $-70^{\circ}$ C unter Rühren auf Raumtemp. erwärmt. Innerhalb von 16 h bei Raumtemp. wechselt die Farbe der Lösung von Gelb nach Orange. Das entstehende AgCl fällt als weißer Festkörper aus. Von diesem Festkörper dekantiert man vorsichtig in den zweiten Schenkel ab. Nach Entfernen des Lösungsmittels i. Vak. bleibt das Produkt 2 als gelber Festkörper zurück; Ausb. 5.45 g (quantitativ), Schmp. 141–142 °C. – IR:  $\tilde{v} = 1449 \text{ cm}^{-1}$  m, 1418 s, 1398 vs, 1373 vs, 1302 m, 1269 m, 1258 m, 1237 m, 1138 s, 1009 w, 976 vw, 951 w, 876 vw, 866 vw, 810 s, 747 m, sh, 716 vs, 694 vs, 681 vs, 577 w, 550 s, 397 vs. – <sup>19</sup>F-NMR:  $\delta = -60.0$  (br. s, AsF $\varepsilon$ ).

$$C_2A_8Cl_2F_6N_3S$$
 (357.92) Ber. Cl 19.8 F 31.9  
Gcf. Cl 20.5 F 29.5

3,5-Dichlor-1-fluor-1 $\lambda^4$ ,2,4,6-thiatriazin (3) und 5-Chlor-1,3-difluor-1 $\lambda^4$ ,2,4,6-thiatriazin (4): In jeweils einen Schenkel einer druckfesten, zweischenkligen Steckfalle mit Teflon-Ventil werden 3.78 g (10.56 mmol) 2 sowie 1.60 g (10.53 mmol) CsF gefüllt und ca. 20 ml SO<sub>2</sub> hinzukondensiert. Nach schnellem Auftauen und Vereinigen der Edukte läßt man 4 d bei Raumtemp. rühren. Anschließend fraktioniert man über ein 0/-70/-196/-196°C-Fallsystem. In der -70 °C-Falle kann so 3 als leicht gelbe Flüssigkeit isoliert werden. 3 ist bei Raumtemp. jedoch nicht stabil, sondern reagiert unter intermolekularem Chlor/Fluor-Austausch zumindest teilweise zu den Folgeprodukten 4 und der Ausgangsverbindung 1 weiter, wie aus Massenspektrum und <sup>19</sup>F-NMR-Spektrum (s. Tab. 1) ersichtlich; Ausb. 1.00 g (Gemisch). - MS (EI): m/z (%; da die Zuführung über Gaseinlaß erfolgte, treten die Zerfallsmuster des flüchtigen 4 stärker auf) =  $187 (10) [M^+(3)], 171 (54) [M^+(4)], 168 (6)$  $[C_2Cl_2N_3S^+]$ , 152 (41)  $[C_2ClFN_3S^+]$ , ..., 46 (100)  $[NS^+]$ .

1,3,5-Trifluor- $1\lambda^4$ ,2,4,6-thiatriazin (5): In cinem 100-ml-Kolben werden 2.65 g (12.96 mmol) 1 sowie 2.51 g (14.04 mmol) SbF<sub>3</sub> vorgelegt und 30 ml Sulfolan mit einer Spritze warm unter Inertgas zugegeben. Nach 16stdg. Rühren bei +80 °C wird über ein 0/-80/ -196/-196 °C-Fallensystem fraktioniert. Das Produkt 5 findet sich als blaßgelbe Flüssigkeit in der -80 °C-Falle; Ausb. 1.00 g (50%), Sdp. 77-78 °C (cxtrapoliert). - MS (EI): m/z (%) = 155 (53) [M<sup>+</sup>], 136 (100) [C<sub>2</sub>F<sub>2</sub>N<sub>3</sub>S<sup>+</sup>], 110 (3) [CF<sub>2</sub>N<sub>2</sub>S<sup>+</sup>], 91 (38) [CFN<sub>2</sub>S<sup>+</sup>], 90 (23) [C<sub>2</sub>F<sub>2</sub>N<sub>2</sub>'], 71 (10) [C<sub>2</sub>FN<sub>2</sub>'], 65 (10) [NSF<sup>+</sup>], 64 (6) [S<sub>2</sub>'], 51 (6) [SF<sup>+</sup>], 48 (6) [SO<sup>+</sup>], 46 (84) [NS<sup>+</sup>], 45 (18) [CFN<sup>+</sup>], 32 (5) [S<sup>+</sup>], 31 (11) [CF<sup>+</sup>], 28 (6) [N<sub>2</sub><sup>+</sup>].

C<sub>2</sub>F<sub>3</sub>N<sub>3</sub>S (155.10) Ber. F 36.8 N 27.1 Gef. F 36.2 N 26.7

3,5-Difluor-1 $\lambda^4$ ,2,4,6-thiatriazinium-hexafluoroarsenat (6): In eine druckfeste Steckfalle mit Teflon-Ventil werden 0.91 g (5.87 mmol) 5, 1.15 g (6.77 mmol) AsF<sub>5</sub> sowie ca. 25 ml SO<sub>2</sub> kondensiert; dann läßt man in einem -40°C-Bad unter Rühren auf Raumtemp. erwärmen. Nach 1.5stdg. Rühren und anschließendem Entfernen aller flüchtigen Bestandteile i. Vak. bleibt das Produkt 6 als leicht gelber Festkörper zurück; Ausb. 1.88 g (quantitativ), Schmp. 142-144°C. - <sup>19</sup>F-NMR:  $\delta = +4.6$  (br. s, CF), -57.9 (br. s, AsF<sub>6</sub>).

C-AsF\_N\_S (325.02) Ber. F 46.8 N 12.9 Gef. F 45.3 N 12.5

1-Chlor-3,5-difluor-1 $\lambda^4$ ,2,4,6-thiatriazin (7): In eine druckfeste Steckfalle mit Teflon-Ventil werden zu den vorgelegten 1.36 g (4.18 mmol) 6 0.33 g (5.04 mmol) NOCl sowie ca. 15 ml SO<sub>2</sub> kondensiert. Beim Erwärmen auf Raumtemp. unter Rühren in einem -55°C-Bad entsteht eine gelbe, trübe Lösung, die über ein -80/-196/-196°C-Fallensystem fraktioniert wird. Das Produkt 7 kann als klare, farblose Flüssigkeit in der  $-80^{\circ}$ C-Falle isoliert werden; Ausb. 0.66 g (92%) 7, Sdp. 121 °C (extrapoliert). - MS (EI): m/z  $(\%) = 136 (100) [C_2F_2N_3S^+], 91 (83) [CFN_2S^+], 90 (8) [C_2F_2N_2^+],$ 77 (13) [CFNS<sup>+</sup>], 71 (6) [ $C_2FN_2^+$ ], 64 (17) [ $S_2^+$ ,  $SO_2^+$ ], 46 (77) [NS<sup>+</sup>].

C<sub>2</sub>ClF<sub>2</sub>N<sub>3</sub>S (171.56) Ber. Cl 20.7 N 24.5 Gef. Cl 20.9 N 24.6

1-Brom-3,5-difluor-1 $\lambda^4$ ,2,4,6-thiatriazin (8): In eine druckfeste Steckfalle mit Teflon-Ventil werden 0.46 g (1.42 mmol) 6 sowie 0.45 g (2.11 mmol) CsBr vorgelegt, ca. 15 ml SO<sub>2</sub> zukondensiert und unter Rühren von -70°C auf Raumtemp. erwärmt. Die leicht gelbe, trübe Lösung wird ca. 16 h weitergerührt und anschließend über ein -80/-196/-196°C-Fallensystem fraktioniert. In der -80°C-Falle kann das Produkt 8 als orange Flüssigkeit isoliert werden; Ausb. 0.24 g (78%) 8, Sdp. 146.5°C (extrapoliert). - MS (EI): m/z (%) = 136 (87) [C<sub>2</sub>F<sub>2</sub>N<sub>3</sub>S<sup>+</sup>], 117 (2) [C<sub>2</sub>FN<sub>3</sub>S<sup>+</sup>], 91 (73)  $[CFN_2S^+]$ , 90 (7)  $[C_2F_2N_2^+]$ , 86 (9)  $[CN_3S^+]$ , 71 (6)  $[C_2FN_2^+]$ , 67 (11), 64 (98)  $[S_2^+, SO_2^+]$ , 48 (50)  $[SO^+]$ , 46 (100)  $[NS^+]$ .

#### C<sub>2</sub>BrF<sub>2</sub>N<sub>3</sub>S (216.01) Ber. Br 37.0 N 19.5 Gef. Br 36.3 N 19.3

Experimentelles zur Elektronenbeugung: Die Elektronenbeugungsintensitäten wurden mit dem Gasdiffraktograph KD-G2<sup>29)</sup> bei zwei verschiedenen Kameraabständen (25 cm und 50 cm) aufgenommen. Die Eichung der Wellenlänge (Beschleunigungsspannung ca. 60 kV) erfolgte mittels ZnO-Pulveraufnahmen. Die Proben wurden bei 20°C thermostatisiert. Der Druck in der Beugungskammer betrug während des Experimentes 3  $\times$  10<sup>-5</sup> mbar. Für jeden Kameraabstand wurden je zwei Aufnahmen nach den üblichen Methoden<sup>30)</sup> ausgewertet. Die gemittelten molekularen Streuintensitäten in den s-Bereichen von 2-18 Å<sup>-1</sup> und von 8-35 Å<sup>-1</sup>, in Schrittweiten von  $s = 0.2 \text{ Å}^{-1}$ , sind in Abb. 2 gezeigt.

CAS-Registry-Nummern

1: 58589-34-7 / 2: 132157-48-3 / 3: 132157-49-4 / 4: 132157-50-7 / 5: 132157-51-8 / 6: 132157-53-0 / 7: 132157-54-1 / 8: 132157-55-2

- <sup>2)</sup> M. Haake, T. Pfeifer, Arch. Pharm. (Weinheim, Ger.) 320 (1987) 899
- <sup>3)</sup> H. W. Roesky, P. Schäfer, M. Noltemeyer, G. M. Sheldrick, Z.
- Naturforsch., Teil B, 38 (1983) 347.
   <sup>4) 4a)</sup> H.-U. Höfs, G. Hartmann, R. Mews; G. M. Sheldrick, Z. Naturforsch., Teil B 39 (1984) 1389. <sup>4b)</sup> R. Maggiulli, R. Mews, W.-D. Stohrer, M. Noltemeyer, G. M. Sheldrick, Chem. Ber. 121
- (1988) 1881. <sup>5) 5a)</sup> T. Chivers, J. F. Richardson, N. M. R. Smith, *Inorg. Chem.* **25** (1986) 47. <sup>5b)</sup> A. Apblett, T. Chivers, *J. Chem. Soc., Chem.* Commun. 1989, 96.
- <sup>6)</sup> E. Jaudas-Prezel, R. Maggiulli, R. Mews, H. Oberhammer, T. Paust, W.-D. Stohrer, Chem. Ber. 123 (1990) 2123.
- <sup>7)</sup> A. Meuwsen, Ber. Dtsch. Chem. Ges. 64 (1931) 2311; vgl. E. De-
- marcay, C. R. Acad. Sci. 91 (1880) 854, 1066. <sup>8) 8a)</sup>H. Schröder, O. Glemser, Z. Anorg. Allg. Chem. 298 (1959) 78. <sup>8b)</sup> O. Glemser, H. Meyer, A. Haas, Chem. Ber. 97 (1964)
- 1704. <sup>9) 9a)</sup>H. J. Emeleus, R. J. Poulet, J. Fluorine Chem. 1 (1971/72) 13. -<sup>9b)</sup> G. Hartmann, R. Mews, G. M. Sheldrick, R. Anderskewitz, M. Niemeyer, H. J. Emeleus, J. Fluorine Chem. 34 (1986) 46.
- <sup>10)</sup> H. W. Roesky, Adv. Inorg. Radiochem. 22 (1979) 239.

- <sup>10</sup> H. W. KOESKY, Aut. Inorg. Rutholment. 22 (1977, 2027)
   <sup>11)</sup> T. Chivers, Chem. Rev. 74 (1985) 341.
   <sup>12)</sup> R. T. Oakley, Progr. Inorg. Chem. 36 (1988) 299.
   <sup>13)</sup> T. Chivers, F. Edelmann, Polyhedron 5 (1986) 1661.
   <sup>14</sup> K. Dehnicke, U. Müller, Comments Inorg. Chem. 4 (1985) 213.
   <sup>15)</sup> <sup>15a</sup> O. Chem. H. Berl, Neuroisconschaften 48 (1961) 620. <sup>15</sup> K. Dennicke, U. Muller, Comments Inorg. Chem. 4 (1969) 213.
   <sup>15</sup> <sup>15</sup> O. Glemser, H. Perl, Naturwissenschaften 48 (1961) 620. –
   <sup>15b</sup> R. L. Patton, W. L. Jolly, Inorg. Chem. 9 (1970) 1079. –
   <sup>15c</sup> Vgl. J. Passmore, M. J. Schriver, Inorg. Chem. 27 (1988) 2749.
   <sup>16</sup> Will State and State
- <sup>16)</sup> Ullmanns Encyclopädie der Technischen Chemie, Bd. 9, S. 651, Verlag Chemie, Weinheim 1975.
- <sup>17)</sup> <sup>17a</sup> A. Serullas, Ann. Chim. Phys. 38 (1828) 379. <sup>17b</sup> J. Liebig,
- A. SETUHAS, Ann. Chim. Phys. 38 (1828) 379. <sup>179</sup> J. Liebig, Poggendorffs Annalen der Physik und Chemie 15 (1828) 359.
  <sup>180</sup> G. Voß, E. Fischer, G. Rembarz, W. Schramm, Z. Chem. 16 (1976) 358. <sup>18b</sup> Vgl. J. Geevers, J. T. Hackmann, W. T. Trom-pen, J. Chem. Soc. C, 1970, 875.
  <sup>19</sup> S. Chen. R. Mews, unveröffentlichte Ergebnisse.
  <sup>20</sup> D. W. Grisley, E. W. Gluesenkamp, S. A. Heininger, J. Org. Chem. 23 (1958) 1802.
  <sup>21</sup> A. Perret R. Perrot Rull Soc. Chim. Ev. 7 (1040) 742.

- <sup>21)</sup> A. Perret, R. Perrot, Bull. Soc. Chim. Fr. 7 (1940) 743. <sup>22)</sup> Chattaway, Wadmore, J. Chem. Soc. 81 (1902) 200.
- <sup>23)</sup> R. T. Boeré, A. W. Cordes, P. J. Hayes, R. T. Oakley, R. W. Reed, W. T. Pennington, Inorg. Chem. 25 (1986) 2445. A. W. Cordes, S. L. Craig, M. S. Condren, R. T. Oakley, R. W.
- 24) Reed, Acta Crystallogr., Sect. C, 42 (1986) 922
- <sup>25)</sup> J. Haase, Z. Naturforsch., Teil A, 25 (1970) 936.
   <sup>26)</sup> A. A. Woolf, H. J. Emeleus, J. Chem. Soc. 1949, 2865.
- <sup>27)</sup> O. Ruff, W. Menzel, H. Plant, Z. Anorg. Allg. Chem. 206 (1932) 61.
- <sup>28)</sup> Handbuch der Präparativen Anorganischen Chemie (G. Brauer, Hrsg.), S. 474 ff, Enke, Stuttgart 1975
- <sup>29)</sup> H. Oberhammer in Molecular Structures by Diffraction Methods, Bd. 4, S. 24, The Chemical Society, London 1976.
- <sup>30)</sup> H. Oberhammer, H. Willner, W. Gombler, J. Mol. Struct. 70 (1981) 273.

[399/90]

<sup>&</sup>lt;sup>1)</sup> R. Wegler in Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel, Bd. 2, S. 364-384, Springer, Heidelberg 1970.